Is evolution a driver or passenger of biological invasions?

Ruth Hufbauer Colorado State University Fort Collins, CO

Evolution as a driver

Adaptation

Range expansion dynamics

Megan Vahsen

Marianna Szűcs

Range Expansion:
Evolution with
and without
spatial structure

Brett Melbourne

Topher Weiss-Lehman

Adaptation: **Evolution** in a novel habitat vs. **no evolution**

Adaptation as a driver

- Does response to selection lead to
 - –higher densities?
 - -faster spread?

Adaptation as a driver

- Selection in a novel habitat
 - Higher growth rate
 - Higher carrying capacity

The model system

• Tribolium castaneum

http://www.flickr.com/photos/jbe/2499396559/sizes/z/cc b emery

The model system

• Tribolium castaneum

Tribolium life cycle in the lab

Adaptation to novel environment during range expansion

Novel Environment

Evolution Treatments

Evolving: continuous populations

Non-evolving: one-for-one replacement each generation

From large colony on wheat flour minimal drift minimal inbreeding no adaptation to corn

Data

- 6 generations of censuses
 - # of individuals by patch in a landscape
- "common garden" experiment
 - growth rate of evolving and non-evolving in novel environment
 - dispersal from low and higher density patches

Data

- 6 generations of censuses
 - # of individuals by patch in a landscape
- "common garden" experiment
 - growth rate of evolving and non-evolving in novel environment
 - dispersal from low and higher density patches

Adaptation as a driver

- Selection a novel habitat
 - Higher growth rate
 - Higher carrying capacity
- Expansion speed $\approx 2\sqrt{rD}$ (Fisher 1937)

growth rate

positive density dependent dispersal

Evolution as a driver

Adaptation

Range expansion dynamics

Evolution as a driver

- Evolution across a range expansion
 - Evolution of growth rate differences from core to edge
 - Higher dispersal rate

density-driven selection for "K" in core

(fewer offspring, lower growth rate)

"r" in edge

(more offspring, higher growth rate)

Phillips 2009

surfing of deleterious alleles at the expansion front

Peischl et al. 2013

Contrasting predictions

Phillips and co: density-driven selection

Peischl and co gene surfing/expansion load

Dispersal

Phillips et al. 2010

Phillips et al. 2010

Prediction

Phillips and co: spatial selection for dispersal

Dispersal

Core Edge

Expansion distance and predictability

Distance Spread

Phillips et al. 2015

Spread experiment

- No novel habitat
- Structured
 - evolving normally with spatial structure
- Shuffled each generation
 - no evolution of spatial structure
 - demographic structure maintained

Contrasting predictions

Phillips and co: density-driven selection

Peischl and co gene surfing/expansion load

Weiss-Lehman et al. 2017

Prediction

Phillips and co: spatial selection for dispersal

Dispersal

Core Edge

Evolution as a driver

Adaptation

Range expansion dynamics

What next?

 First experiment – have beetles from core, edge and non-evolving frozen (~30) (but no \$\$)

- Second experiment have pool seq data (20 beetles)
 - 22 structured (founders, core & edge at gen 8)
 - 15 shuffled landscapes (founders, gen 8)

What next?

 Can we detect signals of adaptation or gene surfing in genomic data?

Is that even an interesting question to ask??